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B8] Scaling Al: Distributed _
Training Summit Node

(2) IBM Power9 + (6) NVIDIA Volta V100

256 GB 256 GB
(DDR4) (DDR4)

= Training State-of-the-art Al models P e T
(especially LLMs) on a single CPU O CPU 1
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GPU: e

| | | | |
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= Too large to fit into the memory. S G o] | ey | B ] e
L. . | 4(16-19) | | 11 (44-47) | | 18 (72-75) | | 26 (104-107) | | 33 (132-135) | | 40 (160-163) |
o Slower tralnlng tlmeS' [ s@23) | [ 12¢851) | [ 190879 | [ 27 08-111) | [ 34 136-139) | [ 41(160-167) |
o Distributed training: Facilitates | 6 (24-27) | | 13 (52-55) | | 20 (80-83) | | 28 (112-115) | | 35 (140-143) | | 42 (168-171) |
such models by parallelizing the
workload across multiple GPUs.
= Either within a single machine or PR B T
across multiple interconnected
. 16 GB 16 GB 16 GB 16 GB 16 GB 16 GB
machlnes (nodes) (HBMZ)W? (HBM2) | 7(HBM2)7 » (HBM2) | (HBM2) L (HBM2)
= New challenge: Communication R o e B

and co-operation of multiple
GPUs.

HTTPS://WWW.OLCF.ORNL.GOV/CALENDAR/PROGRAMMING-METHODS-FOR-SUMMITS-MULTI-GPU-NODES
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NCCL: Addressing the Inter-GPU
Communication Challenge

= NCCL: NVIDIA Collective Communications Library.
= Provides collectives optimized for NVIDIA GPUs and interconnects.

m Collective Operation: A group of GPUs exchanges data and/or
performs computations for a global result, e.g., AllReduce,
Broadcast.

m Performs such operations using optimized CUDA kernels.
= Reduces memory copies.

m Developers do not need to optimize their applications for specific
machines.

m GPU-communication backend for frameworks as PyTorch and
TensorFlow.
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m NCCL in the Al Software Stack

 Userapplication |

model.train()

 yToraTemsorfon

ncclAllreduce()
y

NCCL
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ncclDevKernel_AllReduce...()

.
CUDA
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m NCCL in the Al Software Stack
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B The Challenge: Measuring NCCL Time at Scale

m Inter-GPU communication can impose significant overhead.
m To measure the communication time 3 time NCCL operations.
m Existing tool: NVIDIA Nsight Systems.
m Tracing: produces a detailed event timeline.
= Massive data files (prohibitive at large scales)
= May introduce high overhead.
m Distort execution.
m For large scale runs profiling is more suitable:
® Summarizes the time spent on different operations.
m Concise, aggregated statistics.
= Light overhead and smaller data files.
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B Introducing ncclsee: Lightweight NCCL Profiling

m Key Features & Approach:

= Profiling: Aggregated statistics (call counts, average duration per
NCCL operation).

m Categorizes NCCL operations by buffer size (buckets).

= Low overhead: Minimize impact on application performance.
= Smaller data files suited for large-scale runs.

= Interfaces with:
m NCCL's built-in profiling interface.

m CUPTI (CUDA Profiling Tools Interface) for timing CUDA kernels
related to NCCL operations.
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A4 Profiling interfaces
integrated with ncclsee

NCCL profiling interface # NCCL

= NCCL operation

= AllReduce, Broadcast, etc.
= Data size & type

m Bytes transferred.

= integer, float, bfloat16, etc.

= Asynchronous operations: Only
provides the time until the NCCL
operation is enqueued.

= Missing: The actual time to execute
the operation (CUDA kernel).
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Profiling interfaces
integrated with ncclsee

CUPTI: CUDA Profiling Tools *

Interface

= Activity API: Asynchronously record
CUDA activities, e.g., Kernels, memory
copies.

m The start and end time of CUDA
kernels.

= External Correlation API: Correlating
NCCL operations with CUDA events
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B ncclsee: Combining NCCL profiling interface and CUPTI

NCCL Profiling

. ncclsee CUPTI
interface
| Provides Event, | Record Metadata
‘NCCL Oip ElE | " (Op type, buffer size)
v "
NCCL Op End Provides Event, | Map NCCL Op to a Kernel Launch Nemord Sl .tlme &
> : »| Tag kernel with the
(Enqueued) correlation D correlation ID
Y v
Check correlation ID
aggregate kernel Time |« Kernel Complete Record the end time
to NCCL Op
A 4
T | Provides Event_ | Output: Write profile to
NCCL Finalize | > disk
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M Profiling with ncclsee: ResNet50 training
with PyTorch on two NVIDIA Tesla T4 GPUs NCCL Operations Time Breakdown (Total App: 94.88s)

m Aggregate times among 30 peey—
operations

m Despite only running with 2 25
GPUs, the time spent in NCCL
operations is still significant.

m AlIReduce 30% of the total
application time.

m Broadcast is less than 1%.
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V] Profiling with ncclsee: ResNet50 training
WIEN with Tensorflow+horovod on two NVIDIA
Tesla T4 GPUs

NCCL Operations Time Breakdown (Total App: 179.58s)

Time Distribution by the Size of Buffer Range for AllIReduce
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B Summary

m Measuring Inter-GPU communication at scale is challenging.
m Tracing: produces a detailed event timeline but higher overhead.
= Profiling: more lightweight providing concise, aggregated statistics.
= ncclsee - a lightweight NCCL profiler:
m Times NCCL collectives (incl. GPU kernels).
m Statistics per range of buffer size.
m Al training:
m Profile of ResNet50 training using either PyTorch or Tensorflow.
= |dentify optimization opportunities for NCCL operations.
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m Questions

Thank you!

Q GitHub

ncclsee is under development and hosted on GitHub: https://github.com/variemai/ncclsee

NCCL on GitHub: https://aithub.com/NVIDIA/nccl @2

CUPTI: https://docs.nvidia.com/cupti/overview/overview.html nVI Dl A
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