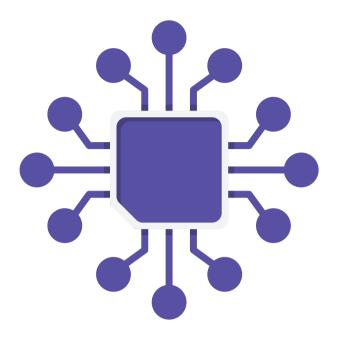
Confidential Containers in multi-tenant HPC environments

Barbara Krašovec, IJS, EGI CSIRT, SLING Dejan Lesjak, IJS, SLING

Security and the HPC environment

- Users have direct SSH access to the HPC.
- Users on the system are trusted.
- Login nodes are protected and monitored, as they are accessible from the external network.
- Zero trust is not implemented.
- Defence-in-depth principle implementation is rare
- Clusters are heterogeneous and accept users from different disciplines, organisations, countries...



User software complexity

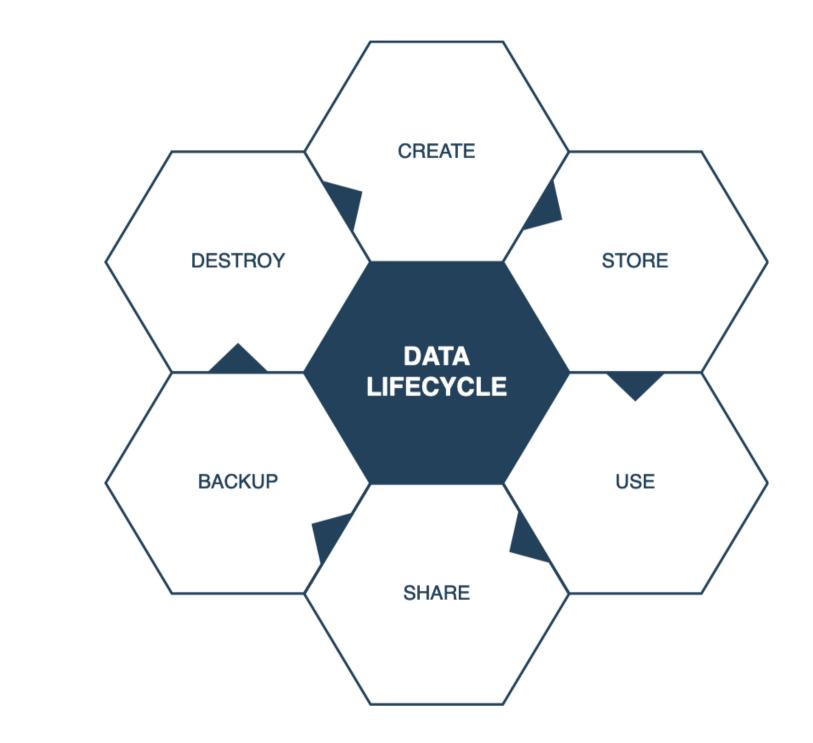
- multiple dependencies
- legacy software
- updates and changes on the host system have impact on the user software
- performance issues due to software upgrades
- reproducibility
- portability

Convenient solution: containers

DEPENDENCIES DEPENDENCIES EVERYMERE

Containers on HPC

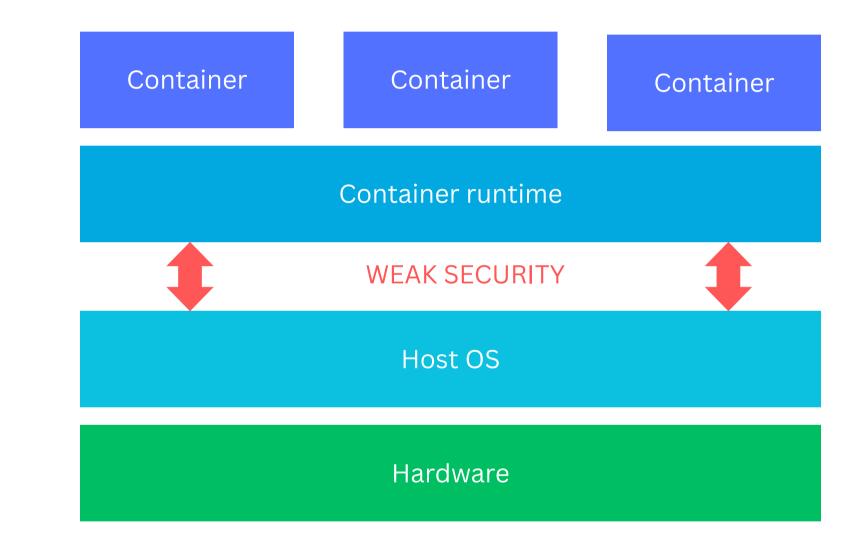
- Containers share the host kernel.
- No hardware isolation.
- User-space abstraction.
- Containers are useful for packaging software.
- Different options available: Singularity, Apptainer, enroot, CharlieCloud, Sarus etc.
- Complex MPI/interconnect compatibility.
- Isolation is ensured by using cgroups and namespaces.



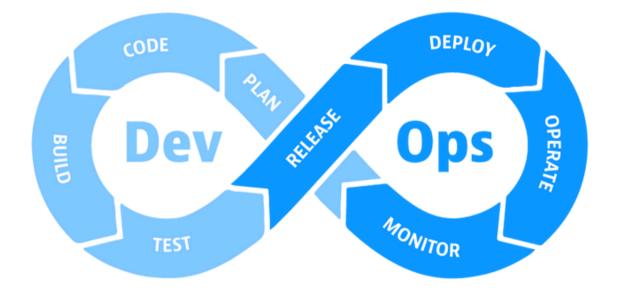
Using containers solves some challenges and brings new ones...

Big data

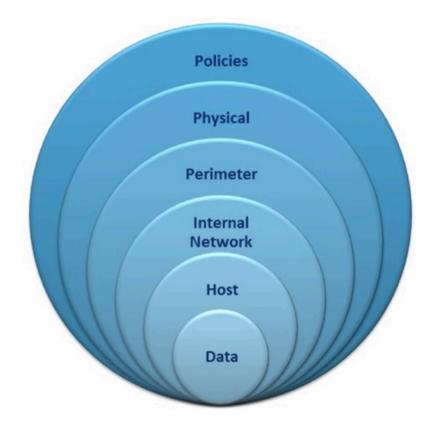
- No data should be in the container.
- Encryption is often not possible (too much data).
- Security is limited: access controls, RBAC, and token-based access.



Isolation


- cgroups
- user namespaces
- Control resource usage.
- Dismiss noisy neighbour effect.
- Reduce attack surface.

Weak boundary between the host and the container.



Security

- images
 - signatures
 - private registries
 - automated deployment
 - vulnerability management
 - encryption
- HE: AppArmor, SELinux, host hardening, seccomp profiles, Linux kernel capabilities
- per tenant networks

Defense in Depth Layers

But what if a user has to process confidential or sensitive data?

Use verified/trusted container images

- **Sign your images** (supported in Singularity 3.0) with PGP key and verify the signature: access tokens can be used.
- Use **automatic deployment** of images and place them in a private registry.
- Perform a secret and vulnerability scan of the images.

\$ singularity keys newpair

Enter your name (e.g., John Doe) : Barbara Krasovec Enter your email address (e.g., john.doe@example.com) : barbara.krasovec@ijs.si Enter optional comment (e.g., development keys) : Containers NSC key Enter a passphrase : Retype your passphrase : Generating Entity and OpenPGP Key Pair... done barbarak@sampo:~\$ singularity key list Public key listing (/home/barbarak/.apptainer/keys/pgp-public):

0) User:	Barbara Krasove
Creation time:	2025-05-09 08:07:0
Fingerprint:	2F1B3AA3C55D9722FF
Length (in bits):	4096

\$ singularity keys push 2F1B3AA3C55D9722FF049BA0A6DA71F99B0920CD INFO:

\$ singularity keys search barbara.krasovec@ijs.si Showing 1 results

KEY ID BITS NAME/EMAIL 9B0920CD 4096 Barbara Krasovec (containers NSC key) <barbara.krasovec@ijs.si

\$ singularity sign singularity-defs/mpi-mellanox.sif Signing image with PGP key material INFO: Enter key passphrase : INFO: Signature created and applied to image 'singularity-defs/mpi-mellanox.sif'

\$ singularity verify singularity-defs/mpi-mellanox.sif

INFO: Veri		fying	y ima	ige	with	PGP	key	
[LOC	CAL]	Sig	ning	enti	ty:	Bark	bara	Kras
[LOC	CAL]	Fir	ngerpi	cint:	2F	'1B3AA	A3C55	5D972
Obje	ects r	verif	fied:					
ID	GRO	JP	LINH	<	ΙTΥ	PE		
1	1		NONE	2	De	f.FII	ĿΕ	
2	1		NONE	2	JS	ON.Ge	eneri	LC
3	1		NONE	2	JS	ON.Ge	eneri	LC
4	1		NONE	3	FS			
INFC):	Veri	fied	sign	atu	re(s)	fro	om ir

vec (containers NSC key) <barbara.krasovec@ijs.si> 07 +0200 CEST F049BA0A6DA71F99B0920CD

Key server response: Upload successful. This is a new key, a welcome email has been sent. public key `2F1B3AA3C55D9722FF049BA0A6DA71F99B0920CD' pushed to server successfully

material sovec (containers NSC key) <barbara.krasovec@ijs.si> 22FF049BA0A6DA71F99B0920CD

Make use of Seccomp profiles

SECCOMP

template: https://github.com/apptainer/singularity/blob/master/etc/seccomp-profiles/
default.json

singularity exec --security seccomp:/path/to/seccomp.json my_container.sif

are seccomp profiles supported in the kernel
grep SECCOMP /boot/config-\$(uname -r)
CONFIG_HAVE_ARCH_SECCOMP=y
CONFIG_HAVE_ARCH_SECCOMP_FILTER=y
CONFIG_SECCOMP=y
CONFIG_SECCOMP_FILTER=y
CONFIG_SECCOMP_CACHE_DEBUG is not set

strace -e trace=socket,connect,accept,bind,listen sendto recvfrom sendmsg recvmsg
ping 8.8.8.8

nsc-login1 ~# dmesg -T| grep seccomp
nsc-login1 ~# journalctl -k | grep seccomp

--security="seccomp:/usr/local/etc/singularity/seccomp-profiles/default.json"

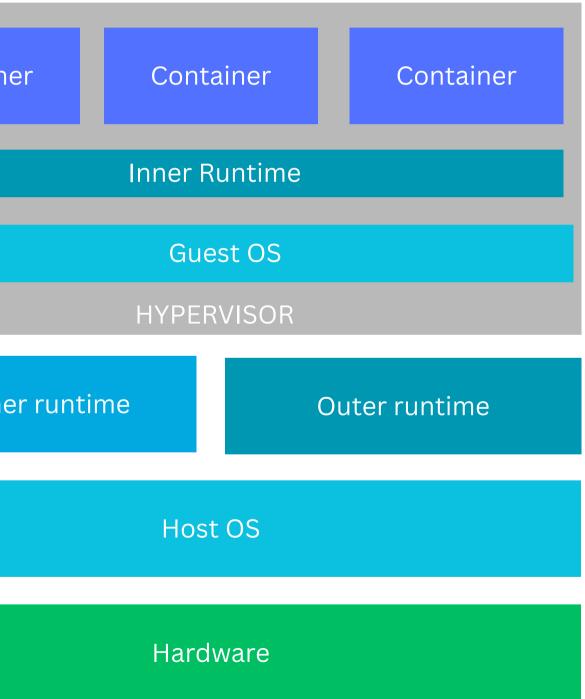
```
--security="apparmor:/usr/bin/man"
```

```
--security="selinux:context"
```

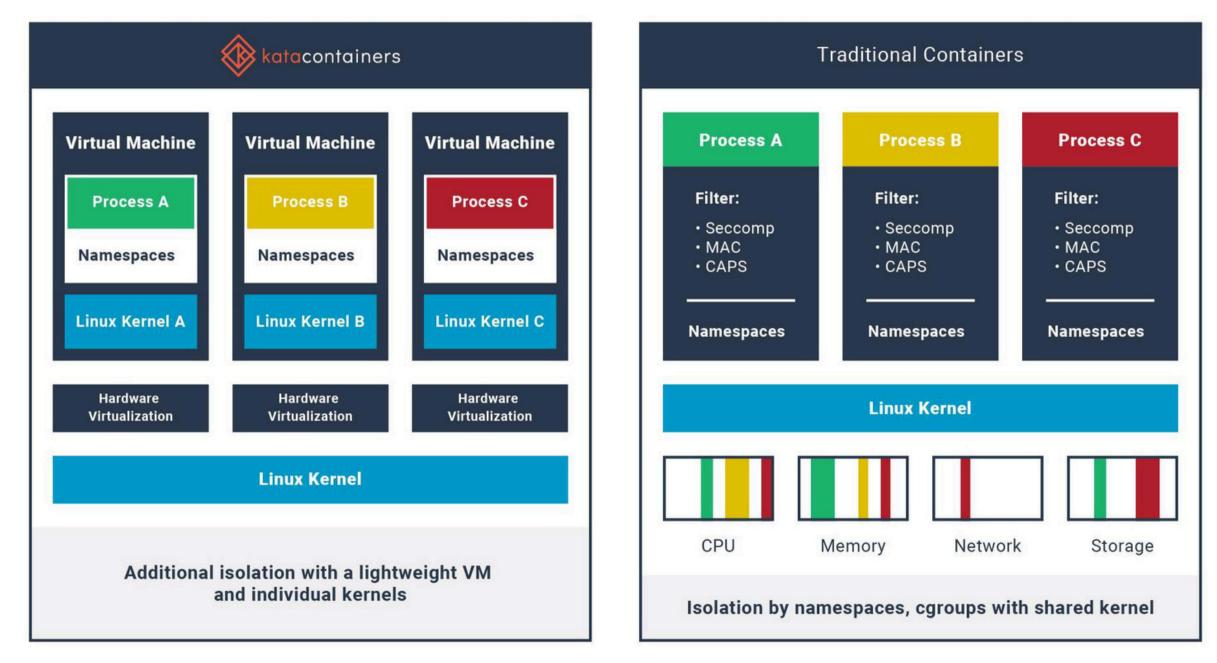
```
--security="uid:1000"
```

```
--security="gid:1000"
```

--security="gid:1000:1:0" (multiple gids, first is always the primary group)


Define which system calls are allowed

• Blacklist commands


Sandboxing

- Different solutions available:
 - IBM Nabla: unikernel as a process with reduced syscalls
 - gVisor: user space kernel, implementation of a majority of syscalls, but no GPU support
 - Firecracker: uses KVM, works as a microVM, no GPU support
 - Kata Coontainers: microVM, supports multiple hypervisors, has support for GPU
 - Bubblewrap: wrapper around namespaces and seccomp profiles
 - Sydbox: uses seccomp profiles, namespaces, landlock, ptrace and MDWE
 - Firejail: requires setuid → large attack surface

Contai	r
Contair	١

E.g.: Kata containers vs Traditional containers

Source: https://katacontainers.io/learn/

Bubblewrap example

bwrap --ro-bind /usr /usr --ro-bind /bin /bin --ro-bind /lib /lib --ro-bind /lib64 /lib64 --ro-bind /etc/passwd /etc/passwd --ro-bind /etc/group /etc/group --dev /dev --proc /proc --ro-bind /cvmfs /cvmfs --ro-bind /ceph/grid/home/barbara /home --bind /tmp /tmp --unshare-net --unshare-user --uid 1977400011 --gid 1977400011 bash

- Since these sandboxes use user namespaces and seccomp profiles, they cannot be combined with containers.
- Similar isolation as the containers provide.

Linux kernel capabilities

Linux capabilities split root privilege into multiple capabilities/privileges that can be granted to processes

- Apptainer/Singularity by default use CAP_SYS_ADMIN, CAP_MKNOD, CAP_SETUID, CAP SETGID, CAP DAC OVERRIDE and CAP CHOWN
- Capabilities can be added to user (see https://docs.sylabs.io/guides/3.0/admin-guide/configfiles.html)

nsc-login1 ~# apptainer capability add --user=barbara CAP NET RAW WARNING: Adding 'CAP NET RAW' capability will likely allow user barbara to escalate privilege on the host WARNING: Use 'apptainer capability drop --user barbara CAP NET RAW' to reverse this action if necessary

nsc-login1 ~# apptainer capability list barbara barbara [user]: CAP NET RAW

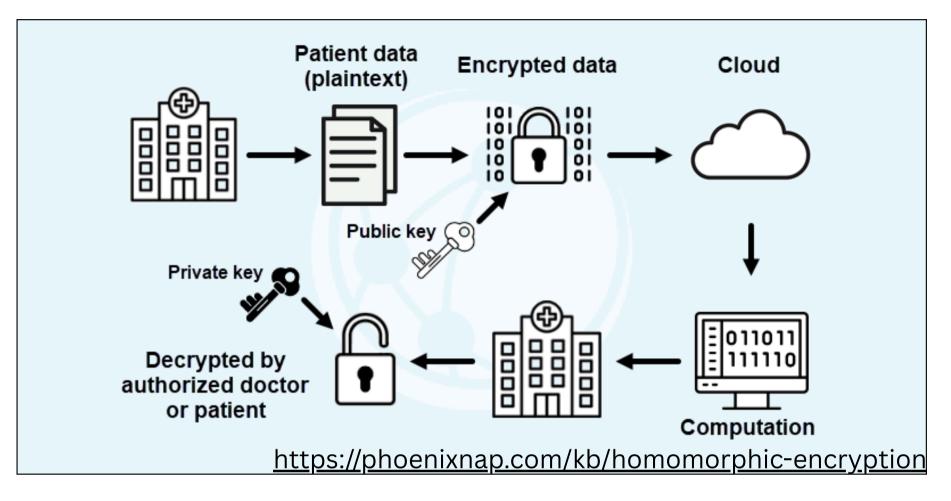
Linux kernel capabilities (cont.)

\$ capsh --print

```
Current: =
Bounding set
=cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap
_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lo
ck,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,
cap_sys_boot, cap_sys_nice, cap_sys_resource, cap_sys_time, cap_sys_tty_config, cap_mknod, cap_lease, cap_audit
_write,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_alarm,cap_block_
suspend, cap_audit_read, cap_perfmon, cap_bpf, cap_checkpoint_restore
Ambient set =
Current IAB:
Securebits: 00/0x0/1'b0 (no-new-privs=0)
 secure-noroot: no (unlocked)
 secure-no-suid-fixup: no (unlocked)
 secure-keep-caps: no (unlocked)
 secure-no-ambient-raise: no (unlocked)
uid=1977400011(barbara) euid=1977400011(barbara)
gid=1977400011 (barbara)
```

Security monitoring / auditing

- Enable auditing.
- Run active security monitoring on the logs.
- Use RBAC.
- Scan images for vulnerabilities (Trivy, Clair).
- Monitor resource usage by Prometheus/Grafana.



orado		in Home 🙀 Vis	ualize 🛄 Documentation			* 🧐
Akvorado is a flow collector, enricher and exporter. It receives flows, adds some data like interface names and countries, and exports them to Kafka.		124 Flows/s	4 Exporters	Last flow TimeReceived Bytes Packets ExporterAddress	2025-05-20713:00:34Z 589 1 240.0.1.11	
Top source AS		Top protocols		ExporterGroup ExporterName ExporterRegion ExporterRole ExporterTenant SamplingRate SrcAddr SrcAddr SrcCautry	dc5-cdgc2.example.com europe edge dc5 acme 100000 216.58.206.1 15169 DE	
oters	150.006 90.00G	0 102	otten	SrcGeoCity SrcCeoState SrcNetMask SrcNetMasne SrcNetRegion SrcNetRole SrcNetSite SrcNetTenant SrcPort InlfBoundary	24 443 external	
104 10 106	60.000 30.000 0.00 16:00 20:00	20 04.00 0	8:00 12:00	InifConnectivity InifCoscription InifName InifSpeed Dst1stAS Dst2ndAS Dst3rdAS DstAddr DstAS DstASpath	ix IX: FrancelX Gi0/0/0/10 franceix 10000 64501 0 192.0.2.117 64501 [64501]	

Confidential containers

Homomorphic Encryption

- Allows computations to be performed on encrypted data.
- Sensitive information can remain secure and unexposed while still being processed.
- Computationally very expensive and may impact performance .
 Different tools available, such as IBM's Fully Homomorphic Encrypt
- Different tools available, such as IBM's Fully Homomorphic Encryption (FHE) Toolkit for Linux, Microsoft SEAL, HElib, and PALISADE.

Hardware encryption

- Securing data using dedicated hardware components.
- Most (all?) public cloud providers provide hardware encryption.
- Trusted execution environments (TEEs) are isolated execution environment within a device's processor, (e.g., Intel SGX, AMD SEV, or Arm TrustZone) and are based on hardware encryption.
- TEEs provide a secure enclave that isolates data and computations from the rest of the system.
- To protect data in memory also from administrator on the system.
- Trust moves to CPU vendor, using remote attestation.

nents. re encryption. ed execution environment SEV, or Arm TrustZone)

or on the system. Ition.

Hardware encryption: TEE

- process based
- VM based extends hardware virtualisation support

• CPU	• GPU
 Intel SGX 	 relyii
 Arm TrustZone 	∘ GPU
• ARM CCA	■ (
• AMD SEV	■ \
 Intel TDX 	■ [
 RISC-V CovE 	■ [

- ng on CPU TEEs virtualisation GVT (Intel) vGPU MPS
- MIG

Confidential Containers architecture

- Builds on container runtime, such as Kata Containers, which works as a sandboxed operator.
- Hardware-Based Security: secure enclaves (like Intel SGX or AMD) SEV-SNP) to protect data in use.
- Encrypted Memory
- Remote Attestation: Verifies the integrity of the container before execution.
- A confidential attestation operator (Trustee) is needed to provide remote attestation capability (like Intel Trust Authority) and communicates with the Trustee agent in the Kata container.

Confidential computing and GPUs

- Support for confidential computing: NVIDIA H100 (in 2022) and B100 (in 2024).
- H100 uses bounce buffers to exchange data between CPU and GPU, if the workload has a lot of communication between CPU and GPU, the performance overhead is significant (CPU limitations).
- **B100** supports **TDISP/IDE***, new PCI security standard, all encryption is done on the PCI-E bus, you get full performance of the Blackwell architecture.

* https://pcisig.com/blog/ide-and-tdisp-overview-pcie%C2%AE-technology-security-features

Encryption of network traffic

- multi-tenant network
- NVIDIA's BlueField-3 is a Data Processing Unit (DPU)
- multi-tenant environments using virtual interfaces
- offloading and accelerating software-defined networking functions
- hardware-enforced isolation between tenants, ensuring that workloads remain secure and independent.
- network traffic can be encrypted per tenant
- reduces CPU utilisation

Thank you!

Questions?