
Confidential Containers in
multi-tenant HPC environments

Barbara Krašovec, IJS, EGI CSIRT, SLING

Dejan Lesjak, IJS, SLING

Security and the HPC environment
Users have direct SSH access to the HPC.

Users on the system are trusted.

Login nodes are protected and monitored,

as they are accessible from the external

network.

Zero trust is not implemented.

Defence-in-depth principle

implementation is rare

Clusters are heterogeneous and accept

users from different disciplines,

organisations, countries...

User software complexity
multiple dependencies

legacy software

updates and changes on the host system

have impact on the user software

performance issues due to software

upgrades

reproducibility

portability

Convenient solution: containers

Containers on HPC
Containers share the host kernel.

No hardware isolation.

User-space abstraction.

Containers are useful for packaging

software.

Different options available: Singularity,

Apptainer, enroot, CharlieCloud,

Sarus etc.

Complex MPI/interconnect

compatibility.

Isolation is ensured by using cgroups

and namespaces.

Using containers solves some
challenges and brings new ones...

Big data
No data should be in the

container.

Encryption is often not possible

(too much data).

Security is limited: access

controls, RBAC, and token-based

access.

What about data in memory?

Hardware

Host OS

Container runtime

Container Container Container

Isolation
cgroups

user namespaces

Control resource usage.

Dismiss noisy neighbour

effect.

Reduce attack surface.

Weak boundary between the
host and the container.

WEAK SECURITY

Security
images

signatures

private registries

automated deployment

vulnerability management

encryption

HE: AppArmor, SELinux, host

hardening, seccomp profiles,

Linux kernel capabilities

per tenant networks

But what if a user has to process
confidential or sensitive data?

Use verified/trusted container images
Sign your images (supported in
Singularity 3.0) with PGP key and
verify the signature: access
tokens can be used.
Use automatic deployment of
images and place them in a
private registry.
Perform a secret and
vulnerability scan of the
images.

$ singularity keys newpair
Enter your name (e.g., John Doe) : Barbara Krasovec

Enter your email address (e.g., john.doe@example.com) : barbara.krasovec@ijs.si

Enter optional comment (e.g., development keys) : Containers NSC key

Enter a passphrase :

Retype your passphrase :

Generating Entity and OpenPGP Key Pair... done

barbarak@sampo:~$ singularity key list
Public key listing (/home/barbarak/.apptainer/keys/pgp-public):

0) User: Barbara Krasovec (containers NSC key) <barbara.krasovec@ijs.si>

 Creation time: 2025-05-09 08:07:07 +0200 CEST

 Fingerprint: 2F1B3AA3C55D9722FF049BA0A6DA71F99B0920CD

 Length (in bits): 4096

$ singularity keys push 2F1B3AA3C55D9722FF049BA0A6DA71F99B0920CD
INFO: Key server response: Upload successful. This is a new key, a welcome email has been sent.

public key `2F1B3AA3C55D9722FF049BA0A6DA71F99B0920CD' pushed to server successfully

$ singularity keys search barbara.krasovec@ijs.si
Showing 1 results

KEY ID BITS NAME/EMAIL

9B0920CD 4096 Barbara Krasovec (containers NSC key) <barbara.krasovec@ijs.si

$ singularity sign singularity-defs/mpi-mellanox.sif
INFO: Signing image with PGP key material

Enter key passphrase :

INFO: Signature created and applied to image 'singularity-defs/mpi-mellanox.sif'

$ singularity verify singularity-defs/mpi-mellanox.sif
INFO: Verifying image with PGP key material

[LOCAL] Signing entity: Barbara Krasovec (containers NSC key) <barbara.krasovec@ijs.si>

[LOCAL] Fingerprint: 2F1B3AA3C55D9722FF049BA0A6DA71F99B0920CD

Objects verified:

ID |GROUP |LINK |TYPE

--

1 |1 |NONE |Def.FILE

2 |1 |NONE |JSON.Generic

3 |1 |NONE |JSON.Generic

4 |1 |NONE |FS

INFO: Verified signature(s) from image 'singularity-defs/mpi-mellanox.sif'

SECCOMP

template: https://github.com/apptainer/singularity/blob/master/etc/seccomp-profiles/

default.json

singularity exec --security seccomp:/path/to/seccomp.json my_container.sif

are seccomp profiles supported in the kernel

grep SECCOMP /boot/config-$(uname -r)

CONFIG_HAVE_ARCH_SECCOMP=y

CONFIG_HAVE_ARCH_SECCOMP_FILTER=y

CONFIG_SECCOMP=y

CONFIG_SECCOMP_FILTER=y

CONFIG_SECCOMP_CACHE_DEBUG is not set

strace -e trace=socket,connect,accept,bind,listen sendto recvfrom sendmsg recvmsg

ping 8.8.8.8

nsc-login1 ~# dmesg -T| grep seccomp

nsc-login1 ~# journalctl -k | grep seccomp

Make use of Seccomp profiles

Define which system calls
are allowed
Blacklist commands

--security="seccomp:/usr/local/etc/singularity/seccomp-profiles/default.json"

--security="apparmor:/usr/bin/man"

--security="selinux:context"

--security="uid:1000"

--security="gid:1000"

--security="gid:1000:1:0" (multiple gids, first is always the primary group)

Hardware

Host OS

Container runtime

Container Container Container

Sandboxing
Different solutions available:

IBM Nabla: unikernel as a process with
reduced syscalls
gVisor: user space kernel, implementation
of a majority of syscalls, but no GPU
support
Firecracker: uses KVM, works as a
microVM, no GPU support
Kata Coontainers: microVM, supports
multiple hypervisors, has support for GPU
Bubblewrap: wrapper around namespaces
and seccomp profiles
Sydbox: uses seccomp profiles,
namespaces, landlock, ptrace and MDWE
Firejail: requires setuid → large attack
surface

HYPERVISOR

Guest OS

Outer runtime

Inner Runtime

E.g.: Kata containers vs Traditional containers

Source: https://katacontainers.io/learn/

Bubblewrap example
bwrap --ro-bind /usr /usr --ro-bind /bin /bin --ro-bind /lib /lib --ro-bind

/lib64 /lib64 --ro-bind /etc/passwd /etc/passwd --ro-bind /etc/group

/etc/group --dev /dev --proc /proc --ro-bind /cvmfs /cvmfs --ro-bind

/ceph/grid/home/barbara /home --bind /tmp /tmp --unshare-net --unshare-user

--uid 1977400011 --gid 1977400011 bash

Since these sandboxes use user namespaces and seccomp profiles, they cannot
be combined with containers.
Similar isolation as the containers provide.

Linux capabilities split root privilege into multiple capabilities/privileges that can be
granted to processes

Apptainer/Singularity by default use CAP_SYS_ADMIN, CAP_MKNOD, CAP_SETUID,
CAP_SETGID, CAP_DAC_OVERRIDE and CAP_CHOWN
Capabilities can be added to user

 (see https://docs.sylabs.io/guides/3.0/admin-guide/configfiles.html)

Linux kernel capabilities

nsc-login1 ~# apptainer capability add --user=barbara CAP_NET_RAW
WARNING: Adding 'CAP_NET_RAW' capability will likely allow user barbara to
escalate privilege on the host
WARNING: Use 'apptainer capability drop --user barbara CAP_NET_RAW' to reverse
this action if necessary

nsc-login1 ~# apptainer capability list barbara
barbara [user]: CAP_NET_RAW

Linux kernel capabilities (cont.)
$ capsh --print

Current: =

Bounding set

=cap_chown,cap_dac_override,cap_dac_read_search,cap_fowner,cap_fsetid,cap_kill,cap_setgid,cap_setuid,cap

_setpcap,cap_linux_immutable,cap_net_bind_service,cap_net_broadcast,cap_net_admin,cap_net_raw,cap_ipc_lo

ck,cap_ipc_owner,cap_sys_module,cap_sys_rawio,cap_sys_chroot,cap_sys_ptrace,cap_sys_pacct,cap_sys_admin,

cap_sys_boot,cap_sys_nice,cap_sys_resource,cap_sys_time,cap_sys_tty_config,cap_mknod,cap_lease,cap_audit

_write,cap_audit_control,cap_setfcap,cap_mac_override,cap_mac_admin,cap_syslog,cap_wake_alarm,cap_block_

suspend,cap_audit_read,cap_perfmon,cap_bpf,cap_checkpoint_restore

Ambient set =

Current IAB:

Securebits: 00/0x0/1'b0 (no-new-privs=0)

 secure-noroot: no (unlocked)

 secure-no-suid-fixup: no (unlocked)

 secure-keep-caps: no (unlocked)

 secure-no-ambient-raise: no (unlocked)

uid=1977400011(barbara) euid=1977400011(barbara)

gid=1977400011(barbara)

Security monitoring / auditing
Enable auditing.
Run active security monitoring on the logs.
Use RBAC.
Scan images for vulnerabilities (Trivy,
Clair).
Monitor resource usage by
Prometheus/Grafana.

Confidential containers

Homomorphic
Encryption

Allows computations to be performed on encrypted data.

Sensitive information can remain secure and unexposed while still being

processed.

Computationally very expensive and may impact performance .

Different tools available, such as IBM's Fully Homomorphic Encryption (FHE)

Toolkit for Linux, Microsoft SEAL, HElib, and PALISADE.

https://phoenixnap.com/kb/homomorphic-encryption

https://phoenixnap.com/kb/homomorphic-encryption

Hardware encryption
Securing data using dedicated hardware components.

Most (all?) public cloud providers provide hardware encryption.

Trusted execution environments (TEEs) are isolated execution environment

within a device’s processor, (e.g., Intel SGX, AMD SEV, or Arm TrustZone)

and are based on hardware encryption.

TEEs provide a secure enclave that isolates data and computations from

the rest of the system.

To protect data in memory also from administrator on the system.

Trust moves to CPU vendor, using remote attestation.

Hardware encryption: TEE

CPU

Intel SGX

Arm TrustZone

ARM CCA

AMD SEV

Intel TDX

RISC-V CovE

GPU

relying on CPU TEEs

GPU virtualisation

GVT (Intel)

vGPU

MPS

MIG

process based

VM based - extends hardware virtualisation support

Confidential Containers architecture
Builds on container runtime, such as Kata Containers, which works as

a sandboxed operator.

Hardware-Based Security: secure enclaves (like Intel SGX or AMD

SEV-SNP) to protect data in use.

Encrypted Memory

Remote Attestation: Verifies the integrity of the container before

execution.

A confidential attestation operator (Trustee) is needed to provide

remote attestation capability (like Intel Trust Authority) and

communicates with the Trustee agent in the Kata container.

Confidential computing and GPUs
Support for confidential computing: NVIDIA H100 (in 2022) and B100 (in
2024).

H100 uses bounce buffers to exchange data between CPU and GPU, if the
workload has a lot of communication between CPU and GPU, the
performance overhead is significant (CPU limitations).
B100 supports TDISP/IDE*, new PCI security standard, all encryption is done
on the PCI-E bus, you get full performance of the Blackwell architecture.

 * https://pcisig.com/blog/ide-and-tdisp-overview-pcie%C2%AE-technology-security-features

Encryption of network
traffic

multi-tenant network

NVIDIA's BlueField-3 is a Data Processing Unit (DPU)

multi-tenant environments using virtual interfaces

offloading and accelerating software-defined networking functions

hardware-enforced isolation between tenants, ensuring that

workloads remain secure and independent.

network traffic can be encrypted per tenant

reduces CPU utilisation

Thank you!

Questions?

